Solutions for Chapter 1 of Statistics for Business & Economics

The following are partial solutions to the first chapter in “Statistics for Business and Economics” By Newbold, Carlson & Thorne. I do not guarantee the correctness of any of the answers presented here. If you found a mistake, have a comment, or would like to ask me anything, I’m available by mail: me (at) shayacrich (dot) com.

1.1.a. Continuous numerical variable

1.1.b. Categorical variable with a nominal level of measurement

1.1.c. Categorical variable with an ordinal level of measurement

1.1.d. Discrete numerical variable

1.2.a. Categorical variable with a nominal level of measurement

1.2.b. Categorical variable with an ordinal level of measurement

1.2.c. Continuous numerical variable

1.3. Categorical with an ordinal level of measurement

1.4.a. Categorical variable with an ordinal level of measurement

1.4.b. Discrete numerical variable

1.4.c. Categorical variable with a nominal level of measurement

1.4.d. Categorical variable with a nominal level of measurement

1.5.a. Categorical variable with a nominal level of measurement

1.5.b. Discrete numerical variable

1.5.c. Categorical variable with a nominal level of measurement

1.5.d. Categorical variable with an ordinal level of measurement

1.6.a. Categorical variable with a nominal level of measurement

1.6.b. Discrete numerical variable

1.6.c. Categorical variable with a nominal level of measurement

1.6.d. Categorical variable with an ordinal level of measurement

1.7.a. Shift / Benefits?

1.7.b. Employee ID / Gender

1.7.c. Time (in seconds)

1.8.a. activity_level

1.8.b. col_grad, smoker,

1.8.c. BMI, daily_cost

1.8.d. hh_income_est, age

1.9.a

chart (1).png

1.9.b.

chart.png

1.10.

chart (2).png

1.11.a.

chart (3).png

1.11.b.

chart (4).png

1.12.

chart (6).png

1.13.

chart (7).png

1.14.a.

chart (8).png

1.14.b.

chart (9).png

1.14.c.

chart (10).png

1.15.a.

chart (12).png

1.15.b.

chart (13).png

1.15.c.

chart (14).png

1.15.d.

chart (15).png

1.16.

chart (16).png

1.17.a.

chart (17).png

1.17.b.

chart (18).png

1.18.a.

chart (19).png

1.18.b.

chart (20).png

1.19.a.

chart (21).png

1.19.b.

chart (22).png

1.19.c. (Israel)

chart (23).png

1.20.

chart (24).png

1.21.

chart (25).png

1.22.

chart (26).png

1.23.a.

Data from: http://www2.census.gov/library/publications/2010/compendia/statab/130ed/tables/11s1002.xls

Looking at the TOC here: https://www.census.gov/eos/www/naics/2017NAICS/2017_NAICS_Manual.pdf

It’s clear that durable goods are aggregated on the “33, 321, 327” line and non-durable goods are aggregated on the “31, 32 (except 321 and 327)” line.

chart (27).png

1.23.b.

chart (28).png

Skipped a few exercises…

1.30.a. 6 (5-7)

1.30.b. 8 (7-8)

1.30.c. 8 (8-10)

1.30.d. 10 (8-10)

1.30.e. 11 (10-11)

1.31. The sample size is 110 observations, so for all subsections, we choose the number of classes to be k=8.

  1. upper((85-20)/8) = 9
  2. upper((190-30)/8) = 20
  3. upper((230-40)/8) = 24
  4. upper((500-140)/8) = 45

1.32. Sample size is 28 observations, so we choose the number of classes to be k=6.

w=upper((65-12)/6)=9

a.

Class

Frequency

10-19

5

20-29

3

30-39

7

40-49

4

50-59

5

60-69

4

b.

chart (29).png

c.

chart (30).png

d.

Stem

Leaf

1

2,3,5,7

2

1,4,8

3

2,5,6,7,9

4

0,1,4

5

1,4,6,9

6

2,4,5

1.33

Stem

Leaf

1

0

2

3, 4, 6, 8, 9

3

0, 5, 6, 9

4

4, 5, 8

5

0, 2, 5

6

2, 7

1.34.a.

Class

Relative Frequency

0 < 10

16.3%

10 < 20

20.4%

20 < 30

26.5%

30 < 40

24.4%

40 < 50

12.2%

1.34.b.

Class

Relative Frequency

0 < 10

8

10 < 20

18

20 < 30

31

30 < 40

43

40 < 50

49

1.34.c.

Class

Relative Frequency

0 < 10

16.3%

10 < 20

36.7%

20 < 30

63.3%

30 < 40

87.8%

40 < 50

100%

1.35.

chart (31).png

Skipping 1.36 – 1.74 (the rest of the chapter).